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 51 
Abstract 52 

Error metrics are useful for evaluating model performance and have been used extensively in 53 

climate change studies. Despite the abundance of error metrics in the literature, most studies 54 

use only one or two metrics. Since each metric evaluates a specific aspect of the relationship 55 

between the reference data and model data, restricting the comparison to just one or two metrics 56 

limits the range of insights derived from the analysis. This study proposes a new framework 57 

and composite error metrics called Bergen Metrics to summarise the overall performance of 58 

climate models and to ease interpretation of results from multiple error metrics. The framework 59 

of Bergen Metrics are based on the p-norm, and the first norm is selected to evaluate the climate 60 

models. The framework includes the application of a non-parametric clustering technique to 61 

multiple error metrics to reduce the number of error metrics with minimum information loss. 62 

An example of Bergen Metrics is provided through its application to the large ensemble of 63 

regional climate simulations available from the EURO-CORDEX initiative. This study 64 

calculates 38 different error metrics to assess the performance of 89 regional climate 65 

simulations of precipitation and temperature over Europe. The non-parametric clustering 66 

technique is applied to these 38 metrics to reduce the number of metrics to be used in Bergen 67 

Metrics for 8 different sub-regions in Europe. These provide useful information about the 68 

performance of the error metrics in different regions. Results show it is possible to observe 69 

contradictory behaviour among error metrics when examining a single model. Therefore, the 70 

study also underscores the significance of employing multiple error metrics depending on the 71 

specific use case to achieve a thorough understanding of the model behaviour. 72 
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1. Introduction 85 

Climate models are important tools for predicting and understanding climate change, and 86 

climate processes (Kotlarski et al., 2014; IPCC, 2021a; IPCC, 2021b; Mooney et al., 2022). In 87 

the context of climate studies, climate model evaluation is essential for identifying models that 88 

poorly simulate the climate system, and for ranking of climate models (Randall et al., 2007; 89 

Flato et al., 2013). The main purpose of climate model evaluation is twofold; firstly, to ensure 90 

that the models are reproducing key aspects of the climate system and secondly to understand 91 

the limitations of climate projections from the models. This ensures proper interpretation and 92 

application of climate models and any climate projections produced by them. The performance 93 

of climate models is quantified by different error metrics such as root mean square error, and 94 

bias, which assess the agreement between the climate model data and reference data (e.g., 95 

gridded observational products, station data, reanalyses, or satellite observations).  96 

Different error metrics are available in the literature, and each has a specific framework 97 

according to its purpose (Rupp et al., 2013; Pachepsky et al., 2016; Baker & Taylor, 2016; 98 

Collier et al., 2018; Jackson et al., 2019). For example, root mean square error compares the 99 

amplitude difference between modelled and reference data, while the correlation coefficient 100 

compares the phase difference between modelled and reference data. Depending on the specific 101 

error, the error metrics can be categorised into different classes; the most popular classes are 102 

accuracy, precision, and association. Accuracy measures the degree of similarity between 103 

climate model data and reference data. An extremely high accuracy indicates that the model 104 

has less error magnitude of any type and testing the model with other error metrics adds little 105 

value (Liemohn et al., 2021). However, if a model has moderate to low accuracy, testing the 106 

model with other metrics can reveal other similarities and dissimilarities between model data 107 

and reference data. Root mean square error and mean square error are the most used accuracy 108 

metrics to evaluate climate models (Watt‐Meyer et al., 2021; Wehner et al., 2021; He et al., 109 

2021), even though the metrics cannot reveal whether the model is under or over-predicting 110 

the observations. Precision metrics quantify the degree of similarity in the spread of the data. 111 

A robust and commonly used metric for assessing the precision of model data is the ratio or 112 

difference of standard deviation between modelled data and reference data (van Noije et al., 113 

2021; Wood et al., 2021; Wehner et al., 2021). Finally, association metrics measure the degree 114 

of the phase difference between modelled data and observed data. Phase difference is important 115 

in climate studies as it affects the initiation and termination time of a season of climate 116 

variables. One metric that is extensively used to measure the association is the correlation 117 

coefficient (Richter et al., 2022; Bellomo et al., 2021; Yang et al., 2021). Liemohn et al. (2021) 118 
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has described various other major categories of metrics and they suggest that assessment of 119 

models should not be restricted to one or two error metrics. Interested readers can follow the 120 

citations to read in detail about the discussed metrics. 121 

There are several composite error metrics that use the modified framework of other metrics to 122 

compute the error magnitude. A widely used example of this is the Taylor diagram (Taylor, 123 

2001), which incorporates correlation, root mean square deviation and ratio of standard 124 

deviation. A distinguishing feature of the Taylor Diagram is its ability to graphically evaluate 125 

the model performance. Another popular example is the Nash-Sutcliffe Efficiency (NSE; Nash 126 

& Sutcliffe, 1970) which is a normalised form of the mean squared error to evaluate and predict 127 

the model streamflow data. Later, it was observed that NSE can be decomposed into three 128 

components which are the functions of correlation, bias and standard deviation (Murphy, 1988;  129 

   Weglarczyk, 1998). Other similar scores include the Kling-Gupta (K-G) efficiency (Gupta et 130 

al., 2009) which is a function of three components: ratio of model mean to observed mean, the 131 

ratio of model standard deviation to observed standard deviation and correlation coefficient. 132 

The study of Gupta et al. (2009) argued the NSE, which has a bias component normalised by 133 

the standard deviation of the reference data, will have a low weight on the bias component if 134 

the reference data has high variability. The modified Kling-Gupta efficiency developed by 135 

Kling et al. (2012) involves the ratio of covariance instead of the ratio of standard deviation.  136 

Both K-G efficiency and modified K-G efficiency use Euclidean distance as a basis to calculate 137 

the error magnitude of the model and the study argued that instead of finding a corrected NSE 138 

criterion, the whole problem can be viewed from the multi-objective perspective where the 139 

three error components can be used as separate criteria to be optimised. It identifies the best 140 

models by calculating the Euclidean distance from the ideal point and then finding the model 141 

with the shortest distance. The ideal value of an error metric is obtained when the model exactly 142 

simulates the observed data. The Euclidean distance is also used by Hu et al. (2019) to develop 143 

the DISO metric that incorporates correlation coefficient, absolute error and root mean squared 144 

error. The study of Hu et al. (2019) also argues that accuracy (root mean square error), bias 145 

(absolute error) and association (correlation coefficient) are the three major error classes based 146 

on which a model should be assessed and evaluating a model using a single error metric may 147 

lead to ill-informed results. The study pointed out a few limitations of the Taylor diagram such 148 

as quantification of error magnitude and low sensitivity to small error differences by the 149 

diagram. In a comparative study, Kalmár et al. (2021) found no substantial difference between 150 

https://doi.org/10.5194/gmd-2023-134
Preprint. Discussion started: 22 August 2023
c© Author(s) 2023. CC BY 4.0 License.



 5 

DISO index and the Taylor diagram. However, based on quantification of error magnitude, 151 

DISO index can be helpful.  152 

The Euclidean distance framework has been increasingly used in different fields as an error 153 

function or metric for many applications such as evaluation of models, parameter      154 

optimization and classification problems. Euclidean distance is basically the second norm of a 155 

vector. Equation 1 is the generalised form of p-norm in a n-dimensional vector space, where 156 

𝑥𝑖  is the vector. When p is 2, it becomes the Euclidean norm. If the vector (𝑥𝑖) is the difference 157 

between the observed data (𝑢𝑖)  and model data (𝑣𝑖) i.e. 𝑥𝑖 =  𝑢𝑖 − 𝑣𝑖, then d is called the 158 

Euclidean distance metric. 𝑖 represent the time series data. Root mean squared error and mean 159 

squared error are different variants of Euclidian distance metric. If the vector is the difference 160 

between error metrics (correlation coefficient [𝑢1], absolute error [𝑢2] and root mean squared 161 

error [𝑢3]) and their ideal values (𝑣1:3), then d is called the DISO index. A disadvantage of the 162 

Euclidean distance is that it suffers the curse of dimensionality (Mirkes et al., 2020; Weber et 163 

al., 1998) i.e. Euclidean distance as a dissimilarity index becomes less efficient as dimension 164 

increases. In this study, we assess the effect of the norm order on the overall error. We use 165 

different measures such as the contribution of outliers to the overall error, the difference 166 

between the maximum and minimum distances, and the average distances to compare different 167 

norms.  168 

𝑑𝑛(𝑢, 𝑣) =  (∑ |𝑥𝑖(𝑢𝑖 , 𝑣𝑖)|𝑝𝑛
𝑖=1 )1/𝑝                                                    (1) 169 

This study has the following objectives: 170 

i) Evaluation of 89 CMIP5 driven regional climate simulations from the Euro- 171 

CORDEX initiative using 38 error metrics; 172 

ii) Clustering of error metrics to assess their performance; 173 

iii) Assessment and recommendation of different p-norms based on their performance; 174 

iv) Formulation of a composite metric using the optimal norm. 175 

2. Data and Study area 176 

We focus on Europe due to the widespread availability of a large ensemble of high resolution 177 

(0.11o) regional climate simulations. In this study, we use 89 regional climate model (RCM) 178 

simulations from Euro-CORDEX to study the behaviour of different error metrics. The Euro-179 

CORDEX dataset provides both precipitation and temperature data at 0.11o grid resolution. 180 

The monthly data from 1975 to 2005, which is available in all the RCM simulations, have been 181 

used to calculate the index. Supplementary Table S1 provides an overview of the global climate 182 
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models (GCMs) downscaled by the different RCMs. Supplementary Table S2 provides an 183 

overview of the RCMs and assigns a number (Column 1) to each RCM which is used to identify 184 

RCMs in plots that have limited space for labels. 185 

For reference data, both precipitation and temperature data are obtained from E-OBS dataset. 186 

The reference data has a 0.25 o grid spacing. To compare the model data with the reference 187 

data, all the data needs to be on a common grid. In this study, we remapped the RCM data onto 188 

the coarser 0.25 o grid of E-OBS.  189 

The study uses the eight sub-regions of Europe defined by Christensen & Christensen (2007) 190 

– British Isles, Iberian Peninsula, France, Mid-Europe, Scandinavia, Alps, Mediterranean, and 191 

Eastern Europe - to conduct analysis in more homogeneous areas. 192 

3. Methodology 193 

This section outlines the framework for clustering error metrics and provides a brief overview 194 

of their characteristics. Additionally, the section describes the proposed metric's framework. 195 

3.1 Error metrics 196 
 197 
Error metrics are commonly used in climate change studies to measure the differences between 198 

modelled and reference data in time series. As the number of climate models has increased, the 199 

study of error metrics has become increasingly important. There are several error metrics 200 

available to evaluate the performance of climate models (Jackson et al., 2019), and the selection 201 

of an appropriate metric remains a topic of debate in the literature. For instance, Willmott & 202 

Matsuura (2005) advocate for mean absolute error (MAE) over root mean squared error 203 

(RMSE), as the latter is not an effective indicator of average model performance. In contrast, 204 

Chai & Draxler (2014) contend that RMSE is superior to MAE when errors follow a Gaussian 205 

distribution. To gain insight into the performance of error metrics, we have analysed Euro-206 

CORDEX precipitation data and examined the differences in ranking of 89 GCM-driven 207 

regional climate simulations using 38 error metrics (Jackson et al., 2019). The list of error 208 

metrics is provided in Table S3. All 89 models are ranked based on their performance using 209 

the 38 error metrics. The average (𝑟𝑀,𝑚𝑒𝑎𝑛; Equation 2) and maximum (𝑟𝑀,𝑚𝑎𝑥; Equation 3) 210 

rank differences are then calculated at each grid point. The former is the mean of all the 211 

pairwise rank differences, while the latter is the maximum of all the pairwise rank differences. 212 

These calculations allow us to understand the performance of different error metrics and the 213 

extent of the disparity in ranking of the climate models. 214 

 215 
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Table 1: Example of ranking order 216 

Number Climate model Ranking order (RO) 

by ith error metric 

(𝐸𝑖) 

Ranking order (RO) 

by kth error metric 

(𝐸𝑘) 

1 M1 3 2 

2 M2 1 3 

3 M3 2 1 

 217 

            𝑟𝑀,𝑚𝑒𝑎𝑛 = 𝜇𝑔(𝑅𝑀,𝑘 − 𝑅𝑀,𝑖)                               (2) 218 

               𝑟𝑀,𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑔 (𝑅𝑀,𝑘 − 𝑀𝑀,𝑖)                     (3) 219 

𝑅𝑀,𝑘 and 𝑅𝑀,𝑖 are the rank assigned to model M by the kth and ith error metric, respectively. 220 

We have provided Table 1 as an example for better understanding of the notations. If there are 221 

three climate models (M1, M2 and M3) as shown in Table 1, all the models have been assigned 222 

to a number (first column) and the order must not change throughout the study. 𝑅𝑀,𝑘 and 𝑅𝑀,𝑖 223 

for model M1 are 2 and 3, respectively. 𝑘 varies from 1 to 𝑁𝐸-1 and 𝑖 varies from 𝑘+1 to 𝑁𝐸, 224 

where 𝑁𝐸 is the total number of error metrics. The difference in ranking is calculated for all 225 

possible combinations of error metrics. 𝜇𝑔() and 𝑚𝑎𝑥𝑔() are the mean and maximum operator, 226 

respectively, which is applied across all the grid points (g:1,2,..,gd). gd is the total number of 227 

grid points which is 11370 in this study. Figure 1 demonstrates that different error metrics used 228 

to assess climate models result in significantly different ranking orders. The average of  𝑟𝑀,𝑚𝑒𝑎𝑛 229 

across all the grid point varies from 16 to 26 whereas the average of 𝑟𝑀,𝑚𝑎𝑥 varies from 40 to 230 

70. The results indicate significant differences in the ranking of the climate models by different 231 

error metrics. The disparity in ranking order may be due to the distinctive error targeted by 232 

each metrics as discussed in the introduction section. 233 

This study assumes that all the errors are important and that it may be necessary to evaluate 234 

model performance using multiple metrics. To achieve independence among the metrics, the 235 

study has attempted to cluster the error metrics based on model performance. This classification 236 

would enable different clusters to have unique characteristics, and metrics within the same 237 

cluster would produce similar results, whereas those from different clusters would yield 238 

different ranking orders. In summary, the study proposes that using multiple error metrics and 239 

clustering them based on performance could improve the understanding and 240 

comprehensiveness of climate model analysis. 241 

 242 
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 243 

Figure 1: Box plot of average rank difference (first column [a, c]) and maximum rank 244 

difference (second column; [b, d]) for precipitation (Pr; first row [a, b]) and temperature (T; 245 

second row [c, d]) over all the grid points in European region 246 

3.2 Clustering of error metrics 247 

The aim of clustering error metrics is to group a set of metrics based on their similarities such 248 

that the metrics within the same cluster generate similar rankings of climate models compared 249 

to those in different clusters. This study clusters the error metrics using a non-parametric 250 

clustering approach inspired by the Chinese restaurant process (CRP; Pitman, 1995). This 251 

approach was chosen based on its performance compared to the k-means clustering approach 252 

(see Text S1) and its simpler framework. The algorithm follows two fundamental principles: 253 

(i) the first error metric (𝐸1) forms the first cluster (𝐶1), and (ii) the ith error metric (𝐸𝑖)  is 254 

assigned to a cluster which has the maximum of all the mean absolute error (𝑢𝑗) values greater 255 

than a particular threshold value (th). The clustering algorithm is presented in Fig. 2. 256 

Similar to the rank difference explained in the previous section, the MAE (𝑅𝑂𝑖,𝑅𝑂𝑘) between 257 

the ranking order produced by two error metrics is computed. RO is the ranking order and it 258 

can be calculated by assigning the climate models to a number. For example, the ranking order 259 

(𝑅𝑂𝑖 ) by ith error metric and the ranking order (𝑅𝑂𝑘 ) by kth error metric are [3, 1, 2] and [2, 260 

3, 1], respectively in Table 1. The MAE values are calculated for all possible combinations of 261 
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error metrics in a particular cluster and the maximum of the MAE values is used to compare it 262 

to the threshold value. The exercise is repeated for all the clusters (𝑁𝐶) available at that time. 263 

The number of clusters (𝑁𝐶)  and the number of error metrics in each cluster (𝑁𝐶𝐸) are updated      264 

for each iteration (i) and if the criteria is not satisfied, then a new cluster is formed using that 265 

error metric. The whole exercise is repeated till all the error metrics (𝑁𝐸) gets assigned to a 266 

cluster.  267 

 268 

Figure 2: Algorithm of the non-parametric clustering for classifying the error metrics 269 

The threshold value is defined as qth percentile of a column matrix D where D is the collection 270 

of MAE values for all possible combinations of error metrics at all the grid points in a region. 271 

In this study, q has been assigned the value of 10 and the sensitivity of q is discussed in the 272 

results section.  273 

3.3 Proposed metric- The Bergen Metrics 274 

The clustering of error metrics guarantees that metrics in different groups produce distinct 275 

ranking orders, implying that each group targets different errors. One of the objectives of this 276 

study is to integrate different errors and create a composite error to obtain a single value. One 277 

potential solution is to use the Euclidean distance approach with different error metrics as 278 

different dimensions in the Euclidean space. To illustrate this, we employed three widely used 279 

error metrics: Normalized Root Mean Square Error (RMSE), Standard Deviation ratio (SD) 280 

and correlation coefficient. In the Euclidean space, an ideal model that predicts the climate 281 

variable as accurately as the observed data would have values of 1, 1, and 0 for correlation 282 

coefficient, Standard Deviation ratio, and normalized RMSE, respectively. The coordinates of 283 
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an ideal model in the Euclidean space would be (1, 1, 0), as represented by the red point in Fig. 284 

3a. Since different models have unique coordinates based on the three metrics, these 285 

coordinates serve as possible solutions to determine the best model. If a decision is required, 286 

one approach could be to calculate the Euclidean distance from the ideal point to all points and 287 

select the point with the shortest distance (Equation 4). This equation can be simplified to 288 

Equation 5. The model that is closest to the ideal point, indicated by the optimal point in Fig.3b, 289 

can be considered as the best model. 290 

𝐸𝐷 𝑀𝑒𝑡𝑟𝑖𝑐 = √
(1 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)2 + (1 − 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜)2

+(0 − 𝑅𝑀𝑆𝐸)2   (4) 291 

𝐸𝐷 𝑀𝑒𝑡𝑟𝑖𝑐 = √
(1 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)2 + (1 − 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜)2

+(𝑅𝑀𝑆𝐸)2   (5) 292 

 293 

Figure 3: Example for three-dimensional (a) ideal point and (b) the solution space      of 294 

correlation coefficient (x-axis), standard deviation (y-axis) and normalized RMSE (z-axis) 295 

 296 

The Euclidian distance has several benefits that make it a popular metric, primarily its 297 

simplistic framework. However, it also has some drawbacks. The Euclidian distance, also 298 

known as L2 norm, is less effective in higher dimensional spaces, which can lead to instability 299 

when additional error metrics are added (Weber et al., 1998; Aggarwal et al., 2001). To mitigate 300 

this issue, recent research has focused on the use of L1 norms, such as relative mean absolute 301 

error and mean absolute scaled error, which have become more popular than L2 norms like 302 

mean squared error. This approach reduces the impact of outliers in the data (Armstrong & 303 
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Collopy, 1992; Hyndman and Koehler, 2006). Reich et al. (2016) found that relative MAE, 304 

based on an L1 norm, is advantageous in assessing prediction models. This study proposes the 305 

following new metrics called the Bergen Metrics (BM) which is a generalised p-norm 306 

framework to evaluate climate models. Equation 6 presents the generalised form of the metric. 307 

It is important to note that equation 6 serves as an illustration of  Bergen metrics, and users 308 

have the flexibility to include or remove metrics according to their preference. 309 

𝐵𝑒𝑟𝑔𝑒𝑛 𝑀𝑒𝑡𝑟𝑖𝑐 = √

(1 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)𝑝

+(1 − 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜)𝑝

+(0 − 𝑅𝑀𝑆𝐸)𝑝

𝑝

     (6) 310 

A case study has been conducted to understand the impact of different p norms on the ranking 311 

order of climate models. For this, five error metrics - RMSE, bias, correlation coefficient, 312 

standard deviation ratio, and mean ratio - have been considered (Equation 7) and the error 313 

metrics are normalised using model data. The study includes 89 RCM simulations for 314 

precipitation, and Fig. 4a shows the ranking of these models for different p norms. The lines 315 

corresponding to each model give information about the model’s ranking in different norms. 316 

The results demonstrate that climate models are highly sensitive to p norms. Significant change 317 

in ranking order is observed for the first four norms. Fig. 5 shows the percentage contribution 318 

of outliers to the total error magnitude for models that have outliers. Median absolute deviation 319 

technique (MAD) is used to identify outliers among the error metrics.  Some of the models 320 

have only one outlier (plots with a single solid line in Fig. 5) and other models have two outliers 321 

(plots with both solid and dotted lines in Fig. 5). The percentage contribution of outliers 322 

increases as the p norm increases, consistent with previous literature (Armstrong and Collopy, 323 

1992; Hyndman and Koehler, 2006). The study has used two parameters to indicate the 324 

capability of each norm to differentiate between climate models - mean pairwise difference of 325 

the BM and the difference between the maximum and minimum values of the BM. Figure 4b 326 

shows that both parameters decrease as the p norm increases, indicating less differentiability. 327 

The results suggest that the first norm (p=1) is the optimal norm to use as a metric in this study 328 

and will be utilized in the following analyses. 329 

𝐵𝑒𝑟𝑔𝑒𝑛 𝑀𝑒𝑡𝑟𝑖𝑐 (𝐵𝑀) = √

(0 − 𝑅𝑀𝑆𝐸)𝑝 + (0 − 𝐵𝑖𝑎𝑠)𝑝

+ (1 − 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)𝑝

+(1 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)𝑝 + (1 − 𝑀𝑒𝑎𝑛 𝑟𝑎𝑡𝑖𝑜)𝑝 

𝑝

(7) 330 

 331 
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 332 

Figure 4: a) The change in the ranking of the climate models with different norm order (p) b) 333 

the change in the difference between the maximum and minimum distances and the average 334 

distances with different norm order 335 

 336 

Figure 5: The percentage contribution of outliers to the total error magnitude as a function of 337 

norm order. The colours represent different outliers. 338 

 339 
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4. Results 340 

4.1 Regional clustering of error metrics 341 

The study considers 38 error metrics (Table S3) which can take both positive and negative 342 

values as input.  Similar to the models, the error metrics have been assigned a number (column 343 

1; Table S3) and the error metrics have been labelled as those numbers in some figures.  344 

The clustering technique described in the methodology section can be applied to individual 345 

grid points, but for the sake of simplicity, we use a single cluster for all grid points within each 346 

of these regions defined by Christensen & Christensen (2007). The methodology is modified 347 

slightly to enable regional clustering. At a grid point scale, the maximum value of mean 348 

absolute error (𝑢𝑗) is used as a proxy for that specific error metric at a grid point. For regional 349 

clustering, the maximum MAE values are computed for all grid points within the region, and 350 

the average of those values is used as a proxy for that region and error metric. This value is 351 

then compared with a threshold to determine whether the error metric belongs to a certain 352 

cluster or it should be assigned to a new cluster. The clustering algorithm is executed for 353 

multiple thresholds. 354 

The 5th, 10th, and 20th percentiles are selected as potential thresholds to cluster the error 355 

metrics. However, users can select any number of thresholds for the sensitivity analysis. The 356 

clustering algorithm is allowed to run for all the thresholds to determine the optimal threshold. 357 

The efficiency of each cluster for a given threshold is represented by the mean of MAE over 358 

all the clusters. Another criterion used to determine the threshold is the number of clusters 359 

corresponding to each threshold. An increase in the percentile (q) is expected to increase the 360 

MAE as the magnitude of threshold increases. Similarly, the number of clusters are expected 361 

to decrease as q increases as it can allow more error metrics into a cluster due to higher 362 

threshold magnitude. From Fig. 6, we conclude that the results are according to our 363 

expectations. It is found that increasing the percentile resulted in an increase in MAE and a 364 

decrease in the number of clusters. The 10th percentile is selected as the threshold to cluster 365 

the error metrics for both temperature and precipitation, as it has a smaller number of clusters 366 

compared to 5th percentile and less MAE compared to 20th percentile. The  367 

 368 

https://doi.org/10.5194/gmd-2023-134
Preprint. Discussion started: 22 August 2023
c© Author(s) 2023. CC BY 4.0 License.



 14 

 369 

Figure 6: The variation in MAE (first box) and number of clusters (second box) corresponding 370 

to 5th, 10th and 20th percentile for precipitation (pr) and temperature (tas) for all the eight regions 371 

4.2 Results of clustering 372 

4.2.1 Precipitation 373 

For the British Isles region, the classification of 38 error metrics resulted in 15 clusters, with 8 374 

error metrics being single point clusters due to their unique behaviour (Fig. 7). These 8 metrics 375 

are d [2], (MB) R [17], MdE [19], MEE [21], MV [22], r2 [31], SGA [35], and R(Spearman) 376 

[36]. The threshold for precipitation data is 6.35, indicating that all 8 error metrics produced 377 

MAE values greater than 6.35 compared to the remaining 30 error metrics. RMSE [32] and its 378 

variants such as normalized RMSE by IQR [25], mean [26] and range [27] are assigned to the 379 

same cluster, as ED [7], IRMSE [9], MAE [13], MAPD [15], MASE [16], and MSE [23]. The 380 

reason could be the L-norm framework which is used by most of the error metrics in this cluster. 381 

D1 [3], d1 [4], and d(Mod.) [5] which share a similar framework, are also assigned to a single 382 

cluster. Error metrics that evaluate the phase difference between observed and modelled data, 383 

including ACC [1], R (Pearson) [30], SC [34], and M [38], are assigned to a single cluster. 384 

H10(MAHE) [8] and MALE [14] share the same cluster as both metrics consider the difference 385 

of logarithmic of the model and observed data to compute the error. Similarly, MdAE [18] and 386 
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MdSE [20] are assigned to a single cluster, as both metrics use the median of the difference 387 

between observed and modelled data. However, MdE [19] is assigned to a different cluster as 388 

it only considers the difference between observed and modelled data without bringing them to 389 

the positive domain. NED [24] and SA [33] are found to be in the same cluster, as both metrics 390 

are linearly associated while evaluating the model, even though their underlying frameworks 391 

are somewhat different. Although ED [7] and NED [24] follow the L2 norm, they are not 392 

assigned to the same cluster. This can be attributed to the normalisation of observed and 393 

modelled data by their respective means in NED, as the statistical parameters such as mean is 394 

sensitive to outliers, which can result in changes in ranking order. 395 

 396 

 397 

Figure 7: Clustering of error metrics using precipitation (pr) data for British Isles (BI) region. 398 

Each error metric can be identified by the number using Table S3. 399 

The Iberian Peninsula region is found to have 17 clusters, with 12 of them being single point 400 

clusters (Fig. 8). Seven of the eight error metrics that are single point clusters in British Isles 401 

are also single point clusters in Iberian Peninsula, except for r2 [31]. Five other error metrics: 402 

NED [24], KGE (2009) [10], KGE (2012) [11], SA [33], and M [38] are also single point 403 

clusters in Iberian Peninsula region. In British Isles,  KGE (2009) [10] and KGE (2012) [11]  404 

are assigned to the same cluster. The KGE (2012) is different from KGE (2009) since it used 405 

the ratio of coefficient of variation between modelled and observed data instead of the ratio of 406 

standard deviation to avoid the cross-correlation between bias and variability ratio. The 407 
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coefficient of variation is the ratio between the standard deviation and the mean of the data, 408 

which represents the extent of variability with respect to the mean of the data. A biased dataset 409 

can produce a significant change in the relative standard deviation, i.e., the coefficient of 410 

variation. That is a possible reason why both the metrics are in different clusters. r2 is assigned 411 

to the correlation metrics cluster in this region. The remaining clusters are almost identical to 412 

the clusters obtained for the British Isles region. 413 

 414 

Figure 8: Clustering of error metrics using precipitation (pr) data for Iberian Peninsula (IP) 415 

region. Each error metric can be identified by the number using Table S3. 416 

As the results for the other 6 regions are similar to either the British Isles or the Iberian 417 

Peninsula, we simply summarise their results here and refer the reader to the supplementary 418 

material for further information. France (Fig. S2), Mid-Europe (Fig. S3), Scandinavia (Fig. 419 

S4), Alps (Fig. S5), Mediterranean (Fig. S6) and Eastern Europe (Fig. S7) exhibit 15, 15, 16, 420 

16, 17, and 14 clusters, respectively, with 8, 8, 10, 10, 12, and 6 single point clusters. France 421 

and Mid-Europe have the same clusters as the British Isles, and the Mediterranean has the same 422 

clusters as Iberian Peninsula. Scandinavia has clusters similar to British Isles, except that M 423 

[38] is a single point cluster and r2 [31] has been assigned to the correlation metrics cluster in 424 

Scandinavia.  The Alps also has clusters similar to British Isles, except  KGE (2009) [10] and 425 

KGE (2012) [11] are single point clusters. Eastern Europe also has clusters similar to British 426 
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Isles, with the exception that d [2], which is a single point cluster in British Isles, forms a new 427 

cluster with M [38] in Eastern Europe. 428 

4.2.2 Temperature 429 

Compared to precipitation data, temperature data has a lower number of clusters, which can be 430 

attributed to the lower variability in temperature data. The clustering of error metrics for British 431 

Isles is shown in Fig. 9. For British Isles, 12 clusters are identified, with 5 single point clusters, 432 

namely KGE(2009) [10], KGE(2012) [11], MV [22], SGA [35], and R(Spearman) [36]. Similar 433 

to precipitation clusters, several error metrics, including ED [7], IRMSE [9], MAE [13], MAPD 434 

[15], MASE [16], MSE [23], NRMSE(IQR) [25], NRMSE(mean) [26], NRMSE(range) [27] 435 

and RMSE [32] are assigned to the same cluster.  436 

 437 

Figure 9: Clustering of error metrics using temperature (tas) data for British Isles (BI) region. 438 

Each error metric can be identified by the number using Table S3. 439 

The correlation metrics, such as ACC [1], r2 [31], SCO [34], and R(Pearson) [36] belong to 440 

the same cluster. France (Fig. S8) and Mid-Europe (Fig. S9) have the same cluster as British 441 

Isles for temperature data. For Iberian Peninsula (Fig.10), 13 different clusters are identified, 442 

with 7 single point clusters, including MdE [19] and MEE [21] in addition to the 5 single point 443 

clusters from British Isles. The remaining clusters are similar to those in British Isles. 444 

Mediterranean (Fig. S10) has the same cluster as Iberian Peninsula for temperature data, with 445 

13 clusters and 7 single point clusters. Scandinavia (Fig. S11) and Eastern Europe (Fig. S12) 446 
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have the same number of clusters i.e. 14 clusters. Scandinavia has 8 single point clusters 447 

whereas Eastern Europe has 9 single point clusters. Alps (Fig. S13) has 15 clusters with 10 448 

single point clusters.  449 

 450 

Figure 10: Clustering of error metrics using temperature (tas) data for Iberian Peninsula (IP) 451 

region. Each error metric can be identified by the number using Table S3. 452 

4.3 Bergen Metrics 453 

A Bergen metric is computed for all eight regions using the respective clusters for both 454 

precipitation and temperature. A single metric is chosen from each cluster randomly; Random 455 

selection demonstrated no discernible impact on the ranking (see Supplementary Material). 456 

Although computed for all 89 regional climate models, this paper focuses on discussing only 457 

one climate model for both precipitation and temperature. The CLM Community (CLMCom) 458 

regional model from ICHEC-EC-EARTH for r3i1p1 realisation is discussed as it performed 459 

best at over 25 grid points in 5 regions and more than 2 grid points in seven regions. For the 460 

temperature variable, the CLMCom model form CCCma-CanESM2 model for r1i1p1 461 

realisation is discussed, as it performed best at over 25 grid points in seven regions. 462 

4.3.1 Precipitation 463 

A Bergen metric (BM) is used to assess the performance of the CLMCom model for 464 

precipitation in all eight different regions. The BM in British Isles region is a composite metric 465 

that takes into account 15 different error metrics i.e. ACC, D1, dr, H10(MAHE), KGE(2009), 466 
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MdAE, NED, d, MB(R), MdE, MEE, MV, r2, SGA, and R(Spearman). Figure 11 provides an 467 

overview of the spatial distribution of the BM for all eight regions, while the spatial distribution 468 

of each of these metrics is shown in Fig. 12 for the British Isles region. 469 

The magnitude of BM ranges from 0 to 13, with a score of 0 indicating good performance by 470 

the model. Based on the results, the CLMCom model performed well in the western part of 471 

British Isles, as indicated by the BM. This is a result of the good performance of most of the 472 

individual metrics that comprise the Bergen Metric. This is shown in Fig. 12. There are some 473 

contradictory results from different error metrics in the eastern region. While all 13 metrics 474 

indicate good performance, the MV,  r2 and NED indicate very bad performance by the model. 475 

 476 

Figure 11: Spatial distribution of Bergen metric using precipitation data for all the eight 477 

regions 478 
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 479 

Figure 12: Spatial distribution of the error metrics used to compute the Bergen metric for 480 

precipitation and for British Isles (BI) region. The error metrics have been labelled by the 481 

abbreviation and the corresponding error metrics can be identified from Table S3. 482 

The use of individual error metrics can provide meaningful insights into the performance of 483 

the model in different regions. For example, metrics such as dr, MdAE, MdE, and MEE 484 

indicate good performance in the southeastern region, while R(Spearman) indicates bad 485 

performance by the CLMCom model which implies that the phase difference is significant 486 

between observed and modelled data in this region. It is worth noting that some metrics, such 487 

as r2 and R(Spearman), may provide different results even though they share a similar 488 

framework. R(Spearman) only tells how well the modelled data follow the observed data while 489 

r2 indicate how well the data represents the line of best fit (https://tinyurl.com/y52r3xed; 490 

https://tinyurl.com/yk2jmsxt). Overall, the use of multiple error metrics and the analysis of 491 

individual metrics can provide a more comprehensive assessment of the model's performance, 492 

particularly in regions where different metrics provide conflicting results. 493 
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 494 

Figure 13: Spatial distribution of the error metrics used to compute the Bergen metric for 495 

precipitation and for Iberian Peninsula (IP) region. The error metrics have been labelled by the 496 

abbreviation and the corresponding error metrics can be identified from Table S3. 497 

Figure 14 shows a Bergen metric for Iberian Peninsula applied to the CLMCom model, which 498 

is based on 17 error metrics obtained from each cluster. These metrics, including ACC, D1, dr, 499 

H10 (MAHE), MdAE, d, KGE (2009), KGE (2012), MB (R), MdE, MEE, MV, NED, SA, 500 

SGA, R (Spearman) and M, are presented in Fig. 13. The results indicate that the model 501 

performs relatively better in the northeast and southeast regions compared to the western region 502 

(see Fig. 11), possibly due to the influence of certain metrics such as ACC, R (Spearman), MV, 503 

NED, and SA. Additionally, while KGE (2009) and KGE (2012) exhibit similar spatial error 504 

patterns, further analysis in the southern region reveals the differences in the magnitude of 505 

error. Interestingly, despite their similarity, KGE (2009) and KGE (2012) are classified into 506 

different clusters based on a threshold MAE of 5.41, used to determine cluster membership.  507 

 508 

France (Fig. S14), and Mid-Europe (Fig. S15) have the same clusters as the British Isles, and 509 

therefore the same error metrics used in British Isles are used to calculate the Bergen metric 510 

for France and Mid-Europe. The Bergen metric indicates an average performance of the model 511 

for the entire study region of France (see Fig. 11). While r2 shows a very poor performance of 512 

the model for France, MEE metric shows a completely opposite trend, indicating a very good 513 

performance of the model. Similar disagreement between r2 and MEE is also observed in the 514 
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British Isles. On the other hand, SGA, which compares the shape of the two signals, shows an 515 

average performance by the model. In terms of the spatial distribution of error, the Bergen 516 

metric shows lower error magnitudes for MEE in the southeast part of the study region.  517 

The Bergen metric is also used to assess the performance of the CLMCom model for 518 

Scandinavia and Alps using 16 error metrics from each cluster, including ACC, D1, dr, H10 519 

(MAHE), MdAE, NED, d, KGE (2009), KGE (2012), MB (R), MdE, MEE, MV, SGA, R 520 

(Spearman) and M. The spatial distribution of these metrics is presented in supplementary Fig. 521 

S16 (Scandinavia) and Fig. S17 (Alps). 522 

Fig. S16 and Fig. 11 suggest that the CLMCom model does not perform well for Scandinavia. 523 

However, some error metrics, including dr, MdAE, MdE, and MEE, show good performance 524 

in the southern part of the region. Although MdAE, MdE, and MEE are assigned to different 525 

clusters, they exhibit similar spatial distributions of error. It is worth noting that despite the 526 

similarity, the three error metrics are in different clusters due to their higher MAE between 527 

them. For the Alps, the Bergen metric indicates a relatively good performance of the CLMCom 528 

model. It can be observed in Fig. S17, all metrics except r2 show good performance for the 529 

model.  530 

The Mediterranean has the same clusters as the Iberian Peninsula, and the spatial distribution 531 

of each metric for the Mediterranean is presented in Fig. S18. The Bergen metric for the 532 

CLMCom model suggests an average performance for the entire Mediterranean region. Some 533 

of the error metrics, such as KGE (2009), KGE (2012), dr, and MdAE, indicate good model 534 

performance. However, metrics such as SGA, SA, and NED, show relatively poor performance 535 

of the model.  536 

For  Eastern Europe, the Bergen metric is computed using 14 error metrics from each cluster, 537 

as listed: ACC, d, D1, dr, H10(MAHE), KGE(2009), MdAE, NED, MB(R), MdE, MEE, MV, 538 

SGA, and R(Spearman). The spatial distribution of each metric is presented in Fig. S19. One 539 

notable observation from the figure is the difference between SGA and MEE, which indicates 540 

that although the model data has a low bias, the direction of error of the modelled data is 541 

completely different from that of the observed data. This insight can be valuable in identifying 542 

areas where the model's performance can be improved. 543 

4.3.2 Temperature 544 

For temperature, we focus on the CLM Community (CLMCom) regional model driven by  545 

ICHEC-EC-EARTH to demonstrate the application of Bergen metrics for temperature. The 546 

spatial distribution of BM is shown in Fig. 14, which indicates average performance by the 547 
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model, except in certain areas like northern part of Scandinavia, central part of Eastern Europe 548 

and western part of Iberian Peninsula, where the performance is bad. The British Isles (Fig. 549 

15), France  (Fig. S20), and Mid-Europe (Fig. S21) regions have 12 clusters, and 12 error 550 

metrics, including ACC, d, dr, H10(MAHE), MdAE, MdE, NED, KGE(2009), KGE(2012), 551 

MV, SGA, and R(Spearman) are used to compute the Bergen metric for these regions.  552 

 553 

Figure 14: Spatial distribution of Bergen metric using temperature data for all the eight regions 554 

The Scandinavia (Fig. S22) and Eastern Europe (Fig. S23) regions have 14 clusters and all the 555 

error metrics from British Isles, along with VE and SA, are used to compute the Bergen metric 556 

for these regions. The Iberian Peninsula (Fig. 16) and Mediterranean (Fig. S24) regions have 557 

the same cluster, with a total of 13 clusters and all the error metrics from British Isles, plus 558 

MEE, are used to compute the Bergen metric. The Alps (Fig. S25) region has 15 clusters, with 559 

all the error metrics from Scandinavia, including MEE, used to compute the Bergen metric. 560 

MdE and MEE consistently indicate very bad model performance for all the regions, while the 561 

other metrics indicate relatively good performance. This suggests that the mean and median of 562 

the modelled data tend to underestimate/overestimate the observed mean and median, 563 

respectively. Histograms in Fig. 17 further investigate this, showing that the error values for 564 

ACC are more evenly distributed in the Iberian Peninsula region and close to its ideal point 1, 565 

while the source errors for MdE and MEE are concentrated between -0.5 to -1.5, resulting in 566 

most of the error values being concentrated between 0.9 to 1 after normalization. The source 567 

error represents the distance between the ideal values and actual magnitude after normalization. 568 

Similar patterns can be observed in the other regions for temperature     .  569 
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 570 

Figure 15: Spatial distribution of the error metrics used to compute the Bergen metric for 571 

temperature and for British Isles (BI) region. The error metrics have been labelled by the 572 

abbreviation and the corresponding error metrics can be identified from Table S3. 573 

 574 

Figure 16: Spatial distribution of the error metrics used to compute the Bergen metric for 575 

temperature and for Iberian Peninsula (IP) region. The error metrics have been labelled by the 576 

abbreviation and the corresponding error metrics can be identified from Table S3. 577 
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 578 

Figure 17: Histogram plot of error and source error for MdE, MEE and ACC for Iberian 579 

Peninsula region (IP).  580 

5.  Conclusions 581 

A framework of new error metrics, known as 'Bergen metrics', has been introduced in this study 582 

to evaluate the ability of climate models to simulate the observed climate through comparison 583 

with a reference field. The proposed metric integrates several error metrics, as described in the 584 

results section. To generate a single composite index, the methodology uses a generalized p-585 

norm framework to merge all the error metrics. The research determines that the first norm is 586 

the most effective norm to use in the analysis. 587 

The study also shows that the number of error metrics used in Bergen Metrics can be reduced 588 

using a non-parametric clustering technique. Although several clustering techniques are 589 

already available in the literature, they come with certain requirements. Either they require the 590 

number of clusters before running the algorithm or information on the class label of the feature 591 

vector. The adopted clustering technique tries to identify the natural cluster present in the data. 592 

The mean absolute error based on ranking order is used as a dissimilarity index to assign error 593 

metrics to different clusters. The technique also has a threshold parameter 5th, 10th and 20th are 594 

selected as candidates for threshold parameter and 10th percentile of the D matrix is adopted as 595 

a threshold in this study. It is selected because increase in threshold (20th percentile) resulted 596 

in increase in MAE and decrease in number of clusters, whereas, decrease in threshold (5th 597 
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percentile) resulted in decrease in MAE and increase in number of clusters and the study chose 598 

a middle ground. However, users can investigate different values of q before choosing the 599 

threshold. The clustering technique is compared with the K-means clustering approach and it 600 

is found that the non-parametric technique has lower MAE compared to the K-means approach. 601 

The clustering is performed for all the eight regions and those are British Isles, Iberian 602 

Peninsula, France, Mid-Europe, Scandinavia, Alps, Mediterranean and Eastern Europe. For 603 

precipitation, 15, 17, 15, 15, 16, 15, 17, and 14 clusters are obtained for the eight regions, 604 

respectively. For temperature, 12, 13, 12, 12, 14, 15, 13, and 14 clusters are obtained for the 605 

eight regions, respectively. 606 

A single error metric from each cluster can be chosen randomly as a component to be used in 607 

the calculation of a Bergen Metric. We have shown that random selection does not have any 608 

effect on the ranking order produced by a Bergen Metric. The Bergen Metric which uses the 609 

L1 framework is found to be less sensitive to outliers compared to the other norms and more 610 

stable in higher dimensional space. Bergen Metrics are a multivariate error functions that can 611 

take any number of error metrics of different variables as shown in the last section. It can be 612 

further modified for a weighting-based metric that can allow the user to give more weightage 613 

to particular metrics depending on the requirement of the study. While some metrics show good 614 

performance in certain regions, others indicate poor performance. It is also important to observe 615 

how a single metric can influence and change the ranking of climate models. Bergen metrics 616 

provide a comprehensive evaluation of the model's performance, which is useful for identifying 617 

the strengths and weaknesses of the model in different contexts. 618 

Future research should address the sampling uncertainty associated with Bergen metrics. Each 619 

data point in time series data has a certain contribution to the total error and if the contribution 620 

is not evenly distributed for all the data points, the metric may give biased results. Also, each 621 

metric has probabilistic uncertainty associated with it. For example, RMSE works well when 622 

the errors are normally distributed and what if the errors are not normally distributed. 623 

Discussion on uncertainty may yield useful information that will be helpful in removing the 624 

bias from climate models in the future.   625 

 626 

 627 

 628 

 629 

 630 

 631 
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Data and Code availability 634 

The EURO-CORDEX data used in this work are obtained from the Earth System Grid 635 

Federation server. The reference precipitation and temperature data is available at  636 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-637 

means-preliminary-back-extension?tab=form  638 

The code for clustering the error metrics is available at  https://github.com/badal01/Error-639 

metrics-clustering.  640 
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